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Realization of the exciting potential for stem-cell-based biomedical and therapeutic applications, including tissue engineering,
requires an understanding of the cell-cell and cell-environment interactions. To this end, recent efforts have been focused on the
manipulation of adult stem cell differentiation using inductive soluble factors, designing suitable mechanical environments, and
applying noninvasive physical forces. Although each of these different approaches has been successfully applied to regulate stem cell
differentiation, it would be of great interest and importance to integrate and optimally combine a few or all of the physicochemical
differentiation cues to induce synergistic stem cell differentiation. Furthermore, elucidation of molecular mechanisms that mediate
the effects of multiple differentiation cues will enable the researcher to better manipulate stem cell behavior and response.

1. Introduction

The multipotent adult stem or progenitor cells reside at
restricted locations to allow continuation of the cycle of life
[1]. These tissue-specific stem cells have been identified in
the bone marrow [2], brain [3], skin [4], retina [5], pancreas
[6], intestinal crypt [7], and liver [8] as well as in skeletal
muscle [9]. Depending on the origin, these adult stem cells
exhibit the potency to differentiate into multiple cell types.
Adult stem cells from muscle, for instance, predominantly
become myogenic or hematopoietic [10] while those from
bone marrow are known to harbor hematopoietic, endothe-
lial and mesenchymal (MSC) stem cells. MSCs derived from
the bone marrow stroma are multipotent, hypoimmuno-
genic [11, 12], and proliferate freely in vitro to undergo self-
renewal and differentiation into multiple non-hematopoietic
cell lineages such as chondrocytes, osteoblasts, adipocytes,
and myoblasts, and cardiomyocytes [13], and neuronal cells
[14–16]. This is attractive because, for example, unlike
extraction of the neural stem cells or neural precursors
that would require surgery, MSCs are relatively easy to
isolate and differentiate into neuronal cells, and therefore
may be useful for tissue engineering strategies to repair and

regenerate connective and excitable tissues. Other tissues
such as adipose tissue, periosteum and synovial tissue have
been shown to contain cells with properties similar to those
of stem cells. However, the limited life span and amount
of cells as well as their heterogeneity pose difficulties in
utilizing this particular cell population in the basic research
and therapeutic applications [17–20].

Generally, stem cells have the unique property of self-
renewal without differentiation until and unless appropriate
biological and physical signals are provided. In the context
of tissue engineering, the idea of using stem cells offers
numerous advantages. Unlike engineering tissue constructs
with differentiated cells, the multipotent mesenchymal stem
cells (MSCs) are hypoimminogenic, have higher proliferative
capacity and provide excellent regenerative capability that
will likely lead to desired integrity and functionality of
the engineered tissue. Moreover, MSCs make it possible
to engineer multifunctional tissue constructs and also can
be differentiated into phenotyically and functionally diverse
lineages (e.g., osteoblasts and neuronal cells). It is plausible
that stem cell-based tissue implants can be designed for
tissue formation and vascularization at the same time, which
mimics typical physiological responses to tissue damage.
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Stem cell-based therapeutic application therefore appears
quite attractive. However, a clearer understanding and
adequate control of stem cell differentiation into tissue-
specific lineages would first have to be firmly established.
For example, development of the strategies to control stem
cell behaviors and directing them to a specific lineage
would require an understanding and manipulation of the
cell-environment interactions. Determination of an optimal
physicochemical microenvironment could lead to harvest
the unique properties of the stem cells for self-renewal
and tissue-specific differentiation that can be guided or
perhaps directed by biochemical and physical cues. Rational
approaches for stem cell-based engineering of functional
tissues would then be realized and could be implemented,
thus potentially overcoming the current challenges in regen-
erative medicine. The therapeutic applications of stem cells
would undoubtedly be enhanced by an efficient differenti-
ation protocol that could prescribe the phenotype. Upon
implantation of an engineered tissue construct, it may also
be plausible to intervene externally and regulate the fate of
stem cells.

In this review paper, we will first illustrate that the soluble
factors and external physical forces (i.e., physicochemical
cues) have been combined, engineered and applied to induce
synergistic MSC differentiation. We will next elucidate the
potential mechanism(s) that mediate the MSC differenti-
ation in response to the physicochemical cues. A detailed
understanding of the lineage-dependent mechanisms would
be expected to prescribe the MSC differentiation into specific
tissue types using multiple cues.

2. Synergistic MSC Differentiation

There are at least three different techniques that have been
utilized for MSC differentiation. First, the biological and
pharmacological reagents (e.g., hormones) have been used
to induce stem cell differentiation into bone cells [22–24],
chondrogenic cells [25], adipogenic cells [26, 27], and even
functional neuronal cells [16, 28–30]. Further, MSCs have
also been shown to differentiate into the myogenic lineage
[31, 32]. These recent advances in the MSC manipulation
demonstrate that the multipotent stem cells are capable
of differentiating into excitable and non-excitable tissue
phenotypes. Second, the MSC differentiation may be regu-
lated by mechanical cues, including changes in the cellular
morphology [13, 33] and matrix elasticity [34]. As the matrix
stiffness increased, the focal adhesions could increase in size
and also expression of the focal adhesion molecules. This is
consistent with the finding that the cell adhesion of several
distinctive types may be involved, including focal complexes,
focal adhesion, and fibrillar adhesion [35]. The cells may
utilize the crosstalk between the extracellular matrix and
the cytoskeleton, likely mediated by integrins, to determine
the adhesion type. Other environmental factors (e.g., oxygen
tension) have also been incorporated to solicit synergistic
stem cell differentiation [36]. Third, external mechanical and
electrical forces have been applied to regulate MSC differ-
entiation. For example, while a cyclic mechanical stretch
can enhance bone formation [37–42], various types of shear

stress can synergistically enhance MSC osteodifferentiation
[43–47]. Low intensity ultrasound, another form of mechan-
ical stress, has also shown to enhance the chondrogenic
differentiation [48, 49]. A recent study by Haudenschild
et al. [50] reported the ability of MSCs to distinguish
between dynamic tensile and compressive loading by reg-
ulating distinct gene expression patterns. While dynamic
tensile stresses induce both the fibroblastic and osteogenic
markers, a compression upregulated the chondrogenic gene
expressions. Moreover, our laboratory has recently found
that an electrical stimulation facilitates osteodifferentiation
[24], suggesting that physical stimuli can induce synergetic
effects. Since the electrical and mechanical nature of the
cell is now well established, we suggested that cellular
and molecular responses to external physical stimuli would
be cast more appropriately as electromechanical responses
[51]. Because there appear to be several physicochemical
differentiation cues that promote stem cell differentiation,
strategies to optimize these cues to facilitate or interfere with
the intended fate of stem cells may be highly significant for
regenerative tissue engineering and also in general stem cell
biology. Optimization of at least three known cues would
have to be determined based on multifactorial experimental
design, requiring sophisticated statistical analyses. However,
the focus of this review is to illustrate synergistic stem
cell differentiation in response to a combination of soluble
factors and externally applied physical stimuli, which may
additively or synergistically facilitate the intended MSC
differentiation. For this purpose, a simplified definition
may be used instead. While additive differentiation implies
effects (e.g., quantifiable tissue-specific markers) produced
by multiple cues should be the same as the sum of each cue
used alone, synergistic differentiation would imply greater
than the sum of effects produced by each cue when a
combination of the physicochemical cues is applied. For
example, a combination of soluble factors and an electrical
stimulation induces synergistic osteodifferentiation, while
the use of an electrical stimulation alone fails to differentiate
MSCs [24]. Synergistic interaction may also lead to accelerate
the pace at which the intended stem cell differentiation
proceeds.

Strategies to optimize various differentiation cues to
facilitate and interfere with the intended fate of stem cells
may be highly significant for regenerative tissue engineering
and also in general stem cell biology. In addition to demon-
strating synergistic stem cell differentiation in response to a
combination of soluble factors and externally applied physi-
cal stimuli, elucidation of the potential coupling mechanisms
would have to be studied. Both mechanical and electrical
stimulation has been applied separately and combined with
soluble factors to facilitate MSC differentiation. For example,
recent studies show that, when vascular endothelial growth
factor (VEGF) and a shear stress are used in a combinatorial
manner, synergistic differentiation of endothelial progenitor
cells into endothelial cells may be accomplished [52], and
synergistic chondrogenic differentiation of MSCs achieved
by combining TGF-β3 and a hydraulic pressure [53]. A
combination of fluid shear stress and bone-like extracellular
matrix, made of titanium (Ti) fiber mesh discs, both



Journal of Biomedicine and Biotechnology 3

in the presence or absence of osteogenic dexamethasone
synergistically enhance the osteodifferentitation of MSCs
[54]. Synergistic effects are also observed when a cyclic
strain is combined with dexamethasone to enhance the
osteogenic commitment of human MSCs [55]. Alternatively,
soluble factors combined with an electrical stimulation
induce synergistic osteodifferentiation, while the use of
the electrical stimulation alone fails to differentiate MSCs
toward osteoblasts [24]. Varying the modality of electrical
stimulation, pulsatile biphasic electric field is now shown
to enhance MSC proliferation and upregulate the differ-
entiation related genes [56], and an sinusoidal electrical
stimulus (100 mV peak-to-peak at 4,000 Hz) appears to
induce differentiation of rat PC12 and blastocyst-derived
murine embryonic stem cells toward the neuronal lineage
[57].

3. Elucidation of Mechanisms

Of potential mechanisms that might mediate the effects of
multiple differentiation cues, we will focus on the three
recent but likely mechanisms that have been carefully studied
and documented. First, calcium dynamics in MSCs undergo
noticeable changes that are lineage-dependent, suggesting
that calcium plays a critical role in cell differentiation [58–
60] and could be used as a modulator for MSC differen-
tiation. Second, mitogen-activated protein (MAP) kinase-
dependent signaling has emerged as a potent regulator of
stem cell commitment and differentiation [61, 62]. Since
mechanotransduction is likely associated with MAP kinase
signaling, the potential coupling mechanisms to the MAP
kinase signaling by the differentiation cues could offer
beneficial strategies for tissue engineering. Third, cellular
biomechanical remodeling shows noticeably remarkable
alterations that are also lineage-dependent. Moreover, a close
correlation or interdependence between the [Ca2+]i and
cytoskeletal reorganization is well known, established, and
accepted, although the effects of altered and modulated
[Ca2+]i oscillation on the cellular mechanics are yet to be
fully elucidated. It is interesting to note that, in response
to osteogenic soluble factors or physical stimuli, the human
MSC cellular mechanics become indistinguishable from that
of osteoblasts in about 10 days [63], and the maximal
changes in the Ca2+ dynamics also takes about 14 days
[24]. This may suggest that the biomechanical remodeling
could precede the cellular and molecular identities of stem
cell-derived osteoblasts, and that the microfilament-based
biomechanical remodeling and [Ca2+]i oscillation are inti-
mately connected. MSCs can differentiate down the lineages
that are mechanically at the opposite ends of the spectrum;
mechanically strong osteoblasts versus soft neuronal cells.
There is no doubt that MSCs will have to reorganize their
cytoskeleton and membrane to comply with the intended
differentiation. While methodologies are readily available
to characterize changes in the calcium dynamics and the
biochemical properties, more subtle questions yet to be fully
answered include whether changes are simply a consequence
of MSC differentiation or perhaps a critical determinant to
prescribe MSC differentiation.

3.1. Role of Calcium in Cell Differentiation. Calcium (Ca2+)
is a ubiquitous second messenger and represents one of
the most important biological signals [64]. The intracellular
Ca2+ regulates important cellular and molecular processes
such as proliferation, differentiation, cell biomechanics,
cytoskeletal reorganization, gene expression and metabolism
[21, 65, 66]. Among many cell types, stem cells exhibit robust
calcium activities and appear to undergo [Ca2+]i oscillation.
Transient elevations in free cytosolic Ca2+ concentration
(i.e., [Ca2+]i) referred to as spikes are a nearly universal
mode of signaling in both excitable and non-excitable
cells [67, 68]. While the role of oscillatory Ca2+ signals
has been extensively studied but not yet fully understood,
it is evident that spatial and temporal patterns of Ca2+

dynamics (e.g., spiking amplitude and frequency, and spa-
tial distribution) are important characteristics of cellular
regulatory pathways. [Ca2+]i oscillations are likely mediated
by at least several cell type-dependent Ca2+ influx/efflux
pathways. First, Ca2+ entry across the plasma membrane
can be mediated via voltage-operated Ca2+ channels, stretch-
activated cation channels, and agonist-dependent channels
[69, 70]. Second, Ca2+ release from intracellular stores (e.g.
endoplasmic and sarcoplasmic reticulum, mitochondria)
can be controlled by inositol 1,4,5-triphosphate (IP3)-gated
channels and ryanodine receptors [71]. Third, the excess
Ca2+ is pumped back from cytosol to internal stores or
extruded to extracellular medium by Ca2+-ATPase pumps
[72]. While biochemical cascades, molecular and cellular
interactions, and gene expression profiles can be controlled
by altered intracellular Ca2+ dynamics, intracellular calcium
activities themselves can be regulated by a variety of external
physical stimuli, including electromechanical stimulation
and substrate rigidity [73].

Calcium is also recognized to play a critical role in
cell differentiation. More specifically, spontaneous [Ca2+]i
oscillations are readily observed in MSCs [24, 74] and can
affect stem cell differentiation [58, 59]. In response to a
fluid flow, Riddle et al. [75] have shown that shear stresses
trigger flow rate-dependent increases in [Ca2+]i via the IP3

pathway in MSCs. Moreover, the substrate rigidity now
appears to alter [Ca2+]i oscillations via RhoA/ROCK activity
[73], suggesting that the substrate rigidity-dependent MSC
differentiation [34] may be mediated by altered [Ca2+]i
oscillations. Our laboratory has recently demonstrated that
[Ca2+]i oscillations in MSCs are dramatically altered in
response to the soluble factors and an electrical stimulation.
Indeed, the physicochemical cues alter the calcium dynamics
in MSCs to resemble that found in terminally differentiated
osteoblasts [24]. Interestingly, a combination of osteogenic
soluble factors with an electrical stimulation induced a
synergistic differentiation of MSCs into osteoblasts at rates
that are significantly faster than those induced by the
soluble factors alone. However, application of an electrical
stimulation by itself failed to induce MSC differentiation,
suggesting that an externally applied physical cue may
amplify but not necessarily activate the mechanisms involved
in osteodifferentiation.

Multiple Ca2+ influx or efflux pathways are likely involved
in the regulation of Ca2+ dynamics. At least 4 testable
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Figure 1: A schematic view of the potential effect of physicochemical cues for osteodifferentiation. The inductive factors can diffuse across the
cell membrane and produce immediate effects, while physical cues can couple to the cell surface molecules. We envision that the mechanical
or electrical cues can modulate the Ca2+ dynamics by coupling to (1) ion channels, (2) G-protein coupled receptor-activated molecules (e.g.,
PLC), (3) integrin-mediated focal adhesion, and (4) ATP release [21, 64].

ways are plausible in which the Ca2+ dynamics in MSCs
are modulated (Figure 1). First, because the Ca2+ channels
are known to sustain [Ca2+]i oscillation, MSCs should
express these channels. Indeed, an abundance of the L-type
channels fluorescently visualized in undifferentiated MSCs
(data not shown) indicates that these channels are involved
in the regulation of the [Ca2+]i oscillation. Treatment of
cells with verapamil (a L-type inhibitor) or depletion of
extracellular Ca2+ decreased the [Ca2+]i oscillation to the
level comparable to that found in terminally differentiated
osteoblasts [24]. These findings led to formulation of
a postulate that extracellular Ca2+is required to sustain
the [Ca2+]i oscillation via the L-type Ca2+ channels. As
MSCs undergo osteodifferentiation, the [Ca2+]i oscillation is
decreased. Therefore, the role of L-type Ca2+ channels would
be expected to diminish, suggesting that these channels
may be down regulated. Second, we have shown that,
when the PLC activity is inhibited, the [Ca2+]i oscillation
is essentially abolished. This leads to another hypothesis
that, as MSCs undergo osteodifferentiation, the PLC activity
is reduced. Concomitant reduction of L-type channels and
PLC activity may be coordinated to suppress the [Ca2+]i
oscillation in MSCs undergoing osteodifferentiation. Third,
integrins have been shown to regulate the Ca2+ dynamics
which, in turn, control integrin-mediated adhesion [76], and
cell migration through phosphorylation of focal adhesion
kinase (FAK) [77]. This suggests a close association or
correlation between differential focal adhesions formed in
response to physicochemical cues and cell type-dependent
[Ca2+]i oscillation. Fourth, MSCs were found to secrete
ATP [68], and that autocrine and paracrine interactions
involving purinergic receptors modulate [Ca2+]i oscillations.

Interestingly, we recently detected and characterized ATP
release in response to an electrical stimulation [63]. Taken
together, the physical cues may alter Ca2+ dynamics mediated
in part by ATP secretion.

Whether MSCs are capable of differentiation toward
the neural lineage remains still controversial [78]. While
several laboratories have shown evidence for induction of
neuron-like cell, astrocytes, and glial cells [16, 79–82], other
reports suggest that in vitro differentiation protocols for
bone marrow stromal cells disrupt actins and apparent
neuronal morphology is therefore observed [83], or cellular
makers in response to the neuroinductive factors could be
attributed to cellular toxicity and changes in the cytoskeleton
[84]. Although the opposing findings should carefully be
considered, the biochemical [85] or substrate stiffness [34]
induction of neuron-like cells from human MSCs does
exhibit rapid [Ca2+]i oscillation. In fact, the Ca2+ dynamics
profiles found in these cells differ in many ways. For
example, the initial response to the neuroinductive factors
suppressed the [Ca2+]i oscillation, similar to that found
during osteodifferentiation. However, MSCs undergoing
neurogenesis quickly regain the capability to sustain the
[Ca2+]i oscillation in less than 7 days. In addition, the [Ca2+]i
oscillation profiles are also distinctively different (Figure 2).
Those cells undergoing neurodifferentiation exhibit a pattern
that consists of numerous Ca2+ spikes of both small and
large amplitude. This type of pattern is unique to the
neurogenic cells and not found in any of the five cell types
we have tested thus far, including undifferentiated human
or rat MSCs, P19 mouse embryonic stem cells, osteoblasts,
fibroblasts, and even primary myocytes. Unlike non-excitable
cells however, the N-type Ca2+channels are expected to play
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a major role in neuronal cells. We detect essentially no N-
type channels expressed in the undifferentiated stem cells,
suggesting that the N-type channels are rapidly up-regulated
[86]. In addition, the N-type channels are modulated by
the extracellular signal-regulated kinase (ERK)-dependent
phosphorylation [87]. Since ERK activation is also involved
in stem cell differentiation, up-regulation of the N-type Ca2+

channels is expected as MSCs undergo neurodifferentiation.
Similarly, the PLC activity should be increased in response to
the neuroinductive factors. These findings provide evidence
that the altered Ca2+ dynamics may be unique to the tissue
type and perhaps be used as an early indicator to predict
MSC differentiation into the neurogenic phenotype.

3.2. Mitogen-Activated Protein Kinase Signaling Pathways.
The mitogen-activated protein (MAP) kinases are the ser-
ine/threonine kinases that respond to extracellular signals.
They are also known to mediate signal transduction from
the cell surface to nucleus [88]. In addition to several
important physiological responses, the role of MAP kinases
in proliferation and differentiation has been well doc-
umented and established [89]. Unregulated MAP kinase
signaling, for example, has been implicated in many types of
tumors [90–92]. It also appears that, at least for osteogenic
differentiation, sustained MAP kinase activation promotes
cell differentiation [93], suggesting an interesting hypothesis
that a physical stimulation may be used to sustain and
prolong the MAP kinase activation. At least three major
modules of the MAP kinase signaling cascades have been
identified, including the extracellular signal-regulated kinase
(ERK), the c-Jun amino-terminal kinase/stress activated
protein kinase (JNK/SAPK), and the p38 kinase [94]. Of
these three modules, the ERK signaling pathway represents
the most extensively studied mechanism. Although all three
MAP kinase modules are involved in various biological
processes, the ERK pathway is associated particularly with
cell proliferation and differentiation [95–97]. The JNK/SAPK
kinases have been shown to respond to external stress includ-
ing heat shock, and cytokines. Interestingly, when cells are
treated with mitogenic agents, the ERKs but not JNK/SAPKs
are the dominant signaling pathways. In contrast, cells
exposed to a stress typically utilize the JNK/SAPK pathway
without significantly altering the ERK activities [98, 99].
This observation raises a rather important hypothesis that,
when cells are exposed to external physical stimuli in the
presence of the mitogenic agents, the differential activation of
MAP kinases could be combined, and synergistic biological
responses such as cell proliferation and differentiation may
be induced. It is noted here however that, in response to
mechanical stimulation, the ERK and p38 kinase cascades
can be activated [100, 101], and tethering and rolling of
neutrophils in shear flow activates integrins and induces firm
adhesion through phosphorylation of the p38 kinase [102].

Unlike soluble factors that can readily bind to their
receptors with a degree of specificity, the physical cues do
not preferentially discriminate the targets. However, evidence
has been gathered to suggest that there are potential candi-
dates that may transduce the external physical stimuli. For
example, several mechanotranducers have been identified
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Figure 2: Typical temporal profiles of [Ca2+]i oscillation observed
in human MSC neurodifferentiation. The cell-type dependent
characteristics of the [Ca2+]i oscillations are displayed (a). The
undifferentiated human MSCs show a pattern of regular [Ca2+]i
oscillation (top trace). The [Ca2+]i oscillations become suppressed
and irregular in time for human MSCs undergoing osteodifferen-
tiation (second trace; at week 3). For comparison, we monitored
the [Ca2+]i oscillation in primary myocytes (third trace). The
human MSCs undergoing neurodifferentiation, however, show
yet another pattern of the [Ca2+]i oscillation (bottom trace; at
day 5) that resemble neither the undifferentiated human MSCs
nor other cell types. Further, the [Ca2+]i oscillation profiles of
myocytes and neuronal cells could be distinguished. Unlike the
undifferentiated human MSCs, the neurogenic cells exhibit multiple
[Ca2+]i oscillations and spikes whose amplitudes vary substantially.
The two panels (b) and (c) show the distribution of the Ca2+

spikes measured at the day 1 and 7 of MSC neurodifferentiation,
respectively.
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Figure 3: Two alternate coupling molecular mechanisms. The soluble factors are known to play an important role in stem cells differentiation
(thicker arrows). (a) A physical stimulus may affect cell differentiation synergistically in the presence of the soluble factors via integrins and
the MAP kinase signaling system. The physical stimulus causes integrin redistribution, clustering, activation, and assembly of some focal
adhesion proteins such as FAK, paxillin, vinculin, src, and others. Enzymatic activity of assembled proteins (e.g., FAK or src) causes further
MAP kinase activation. In effect, the MAP kinase cascade is amplified and cell differentiation may be accelerated. (b) Alternative mechanism
involves activation of other receptors (e.g., G-proteins receptors) in the cell membrane. This leads to the PLC enzyme-mediated signaling
through Ca2+ and protein kinase C (PKC) in multiple pathways. Not all intricate signaling effects of these secondary messengers are shown.
However, PKC activation can be effectively coupled to the MAP kinase cascades.

that include integrin-dependent focal adhesion [103–107]
and ion channels [108, 109], and integrin clustering has
been shown to be responsible for transducing electrical
stimulation [110, 111]. In addition to the critical role in
formation of focal adhesions, integrins are also linked to
cell proliferation, differentiation, migration, and apoptosis
[112, 113]. Moreover, integrins are essential for normal
development of hematopoietic lineages and bone marrow
by regulating cell proliferation and differentiation [114], and
cardiomyocyte cell cycle depends on cell attachment via β1-
integrins [115]. Integrin expression level is often associated
with cell differentiation. For example, neuronal differentia-
tion involves down-regulation of integrins [116]. At succes-
sive stage of the osteoblast lineages, cells show differential
patterns of integrin expression [117]. In spite of these diverse
cellular responses regulated by integrins, the interactions
between stromal precursor cells and extracellular matrix are
not clearly understood. It appears clear that the integrin-
matrix interaction can activate MAP kinases, thus suggesting
that MAP kinases act as one of the key molecules that connect
integrins at the cell surface with adhesion-dependent gene
expressions [88]. Interestingly, some findings suggest that
integrin can regulate activation of growth factor receptors
by co-clustering and thereby stimulate MAP kinase signaling
[118]. Another likely candidate is via G-proteins. Indeed,
activation of phospholipase C (PLC) is a key event that mod-
ulates altered calcium dynamics and subsequent production
of yet another secondary messenger, diacylglycerol (DAG).
DAG can lead to activation of protein kinase C (PKC) that,
in turn, activates MAP kinase cascades for proliferation and
differentiation [119]. This G-protein mechanism has been
demonstrated in human osteoblasts [51] and human MSCs
[24] using specific PLC inhibitors (e.g., U73122) and also

by blocking PKC (e.g., bisindolylmaleimideI). Two coupling
mechanisms are therefore envisioned to activate the MAP
kinase cascades. Soluble factors (e.g., dexamethasone) typi-
cally regulate cell differentiation through multiple biochem-
ical mechanisms (Figure 3, thick arrows) including MAP
kinase signal transduction. The commitment of MAP kinases
results in activation of various transcription factors (e.g.,
AP-1, Cbfa1/Runx2) and, in the case of osteodifferentiation,
up-regulation of osteoblast-specific genes [120]. The first
coupling mechanism (Figure 3(a)) affects cell differentiation
via integrins and the MAP kinase signaling pathways. This
physical stimulus causes integrin redistribution, clustering,
activation, and assembly of some focal adhesion proteins
such as focal adhesion kinase (FAK), paxillin, vinculin,
src [121, 122]. Enzymatic activity of assembled proteins
(e.g., FAK or src) causes further MAP kinase activation
[123]. Such assembly of adhesion proteins may mimic the
integrin-matrix interactions, which are known to regulate
the MAP kinase activities. In effect, the MAP kinase cas-
cade is synergistically amplified and cell differentiation is
facilitated. Alternatively, the second coupling mechanism
involves activation of G-protein coupled receptors in the
cell membrane (Figure 3(b)) that leads to the PKC pathway.
PKC activation is then effectively coupled to the MAP kinase
cascades and thus promoting osteodifferentiation.

3.3. Biomechanical Remodeling. A cell has a remarkable capa-
bility to detect external physical forces of various modalities
and adapt to the biomechanical environment by adjusting
its mechanical properties to match those of the surrounding
tissue. Clearly, cells do respond to the physical forces and
mechanically remodel themselves in order to transduce
the physical signals. The concept of mechanotransduction
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relies on the bi-directional cross-talk between the cell and
microenvironment [108, 124, 125] that modulates biochem-
istry in the cytoplasm and ultimately affects the nucleus
[126]. Cytoskeleton is thought to be one of the most
significant cellular mechanical components and provides
structural stability and elasticity to the cell undergoing
multiple deformations without losing its integrity [127, 128].
In addition, the cytoskeleton has now been shown to mediate
complex intracellular signaling pathways [108]. Therefore,
the cytoskeleton is referred to as a mechanotransducer
that regulates the cytoskeleton-associated signaling cascades,
such as Rho family GTPases (e.g., RhoA, Cdc42, Rac)
[129]. In this way, the cytoskeleton mediates cell response
to changing biomechanical environment (e.g., substrate
stiffness, cell shape and deformation, external pressure, shear
stress) by structural rearrangement of the cytoskeleton itself,
or alterations in gene expression profiles, cell adhesion,
and secretion of extracellular matrix (i.e., bi-directional
reciprocity) [127, 130]. Complex interactions between these
multiple signaling molecules, likely triggered by external
signals, cause activation of downstream target proteins,
which could lead to a global structural rearrangement of the
cytoskeleton or altered gene transcription profiles affecting
cell adhesion, secretion of extracellular matrix components,
and cell metabolic activity. Substantial structural and func-
tional differences of cytoskeletons in cells of the same
mesodermal origin (myocytes, osteoblasts, endothelial cells,
kidney cells, etc.) imply that the cytoskeleton may also
participate in cell differentiation.

The plasma membrane is also known to play an impor-
tant role in determining the cellular biomechanics. Due
to the important role of the membrane in many cellular
functions, it is likely involved in the intricate interplay of
events accompanying cell differentiation. Beside its function
as a barrier from the outer environment, it participates
in inward-outward trafficking, motility, cell adhesion to
extracellular matrix, and cell-cell interaction [131, 132].
These and many other intracellular events are regulated
by the membrane surface tension, which is maintained
by several mechanisms including membrane reservoir and
lipid material turnover [132, 133]. Generally, the membrane
tension is determined by the lipid bilayer composition (e.g.,
cholesterol content) [134], and the membrane interaction
with the cytoskeleton via specific biomolecular links such
as linker proteins [135]. We have recently shown that
the plasma membrane attachment to the cytoskeleton in
fully differentiated osteoblasts is much stronger than in
undifferentiated human MSCs [136]. Functionally, a strong
membrane-cytoskeleton adhesion should be beneficial to
keep the structural integrity of osteoblasts subjected to
continuous stress cycles. In human MSCs, a lower membrane
tension is observed that may better facilitate endo- and
exocytosis and contributes to a higher sensitivity of these
unqiue cells to various soluble biochemical environmental
stimuli. Moreover, we have recently reported an interesting
observation [21, 63] that the cell type-dependent linkage
between the membrane-cytoskeleton could be regulated by
the linkers proteins [137–141], including ezrin, radixin, and
moesin (ERM proteins). For example, the ERM proteins’

expression and distribution are clearly different in human
MSCs and osteoblasts [21]. Interestingly, because the ERM
proteins are substrate for RhoA [142], the involvement of
RhoA in stem cell differentiation in response to the extra-
cellular environment [33] may now be better understood
and is likely to depend on the ERM protein distribution and
activation.

Mechanotranduction may be mediated by the target
molecules at the cell surface or by a “hire-wired” tensegrity
network of cytoskeleton [108, 126, 143]. In response to
a physical force, mechanically sensitive molecules such as
integrins, ion channels, and G-protein coupled receptors
could be activated and initiate downstream signaling cas-
cades and alter gene expression [108, 109, 144]. This view
of mechanotranduction has been supported by evidence
that includes integrin blocking by antibodies [111, 145] and
inhibiting stretch-activated cation channels (SACCs) [146,
147]. Alternatively, the tensegrity model postulates a rapid
and coordinated response to a physical force by rearranging
the cytoskeletal and nuclear elements [126, 143]. This model
has gained much attention due to the fact that it provides an
architectural description of mechanotransduction and that
it can support a long range force transmission to influence
the nucleus directly [126]. Based on our recent findings, we
propose yet another alternative model that integrates the
membrane-cytokseleton coupling into the overall cellular
biomechanics. Incorporating AFM-based microindentation
technique to measure the cellular elasticity and assessing the
membrane tension by optically pulling membrane tethers
from the cell body [63, 136], the terminally differentiated
cells (e.g., osteoblasts) show a lower elastic modulus and
formation of shorter membrane tethers. These are in direct
contrast to MSCs in which the elastic modulus is much
higher and the membrane tethers are significantly longer.
Since the elasticity is primarily determined by actins, the
actin stress fibers are found likely in large bundles in
stem cells. Moreover, the membrane-cytoskeletal association
can be probed by optically pulling the membrane tethers.
Significantly longer tether lengths observed in stem cells are
indicative of a weak association between the two components
that determine the overall cellular biomechanics.

As illustrated in Figure 4, the plasma membrane is
strongly associated with the underling meshwork of thin
actin fibers through multiple linker proteins and focal
adhesions in osteoblasts. In contrast stem cells, especially in
MSCs, express thick actin stress fibers that are connected
to the membrane only at few discreet sites (e.g., focal
adhesions). As a result, the overall membrane-cytoskeleton
adhesion in MSCs is weaker and the optically extracted
membrane tethers are therefore longer. However, thick
bundled actin structure in MSCs provides a higher elastic
modulus. Remodeling of the actin cytoskeleton is also
expected to regulate the membrane receptor dynamics [148].
Moreover, actin remodeling and physical coupling between
the cell membrane and cytoskeleton, mediated by linker
proteins, are now shown to be responsible for such dra-
matically different biomechanical properties [21]. Indeed,
recent work from our laboratory indicates that, when human
MSCs are transfected to transiently suppress the ERM
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Figure 4: Model for differential cellular mechanics in human MSCs and osteoblasts. Thin and dense actin filaments in osteoblasts are tightly
bound to the plasma membrane through multiple linker proteins (e.g, ATP-dependent ERM proteins) and focal complexes. Thicker stress
fibers in human MSC are associated with the membrane mostly at the focal contacts due to a smaller contact area with the membrane
and thus lower availability of protein linker binding sites. As result, in human MSC the overall membrane-cytoskeleton adhesion is weaker,
and longer membrane tethers are formed that reflects a lower membrane tension. However, thick bundled actin structure in human MSCs
provides a higher elastic modulus.

linker proteins (ezrin, radixin, and moesin), osteogenic
differentiation is either delayed or perhaps inhibited, and
the cell membrane-cytoskeleton coupling is weakened. For
example, the transfected human MSCs maintained similar
biomechanical properties that are characteristics of undif-
ferentiated stem cells, even though the osteogenic factors
are present. An additional observation indicates a decrease
in the intracellular ATP level and possibly ATP release in
response to an external physical stimulation, providing more
evidence that the ATP-dependent ERM proteins may be a
key player [21]. The ERM proteins function not only as
the connector linking the membrane with microfilaments
but also are now known to regulate signaling. Of particular
interest are their interaction with Rho-A. The role of Rho-
A in mechanically guided MSC differentiation has been
shown [33, 34]. The ERM protein expression is cell type-
dependent and also appears to have been redistributed
when stem cells undergo differentiation [21]. Moreover,
the cellular biomechanical measurements indicate that the
membrane-cytoskeleton coupling, as assessed by tether
lengths, strengthens significantly during osteodifferentiation.
This is consistent with the ERM proteins’ expression that
promotes a stronger association between the cell membrane
and cytoskeleton.

3.4. Integrative Physicochemical Model. An integrative
physicochemical model emerges for the regulation of
stem cells. While this model is not intended to represent
an exhaustive list of possibly numerous pathways, the
differentiation cues may influence the cellular biomechanics
through utilizing both Ca2+-dependent and -independent
pathways (see Figure 5). Soluble factors either bind to the
cell surface receptors or diffuse through the cell membrane,
and alter gene expressions, modulate [Ca2+]i oscillation
and reorganize cytoskeleton [21]. An external physical
stimulus induces an increase in the [Ca2+]i mediated either
by Ca2+ influx across the cell membrane or Ca2+ release
from intracellular storage. An elevated [Ca2+]i level is
likely to cause depolymerization of F-actins and therefore
an overall decrease in the cell elasticity, thus reinforcing
the effects of the soluble factors. Recent studies suggest
that, similar to a physical stimulus, the substrate matrix
stiffness also can reorganize the actin cytoskeleton via the
RhoA/ROCK pathway [34] and alter the [Ca2+]i oscillation
[73]. Independent of an increase in the [Ca2+]i, the physical
stimulus causes a depletion in the intracellular ATP (e.g., ATP
release), which in turn leads to inhibition of ERM proteins’
binding affinity and dissociation of the cytoskeleton from
the membrane. The resulting membrane separation from
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Figure 5: Schematic for an integrative model that depicts coupling
mechanisms mediating the effects of physicochemical cues. In addi-
tion to effects induced by the soluble factors, an external physical
stimulus induces an increase in the cytosolic calcium concentration,
which depolymerizes the F-actins and decrease the cell elasticity.
The physical stimuli can also cause depletion of intracellular ATP,
for example, by ATP release that, in turn, leads to inhibition of
the ERM protein linkers’ binding properties and their dissociation
from the membrane and actin cytoskeleton. A separation of the cell
membrane from the cytoskeleton occurs and effectively decreases
the membrane tension, attributable both to down-regulation of
active ERM proteins and actin depolymerization. Altered calcium
dynamics along with cytoskeletal remodeling may not simply be
consequences of stem cell differentiation but rather important key
factors regulating it.

the cytoskeleton and a decrease in the membrane tension
are attributed both to induced down-regulation of active
ERM linker proteins and actin depolymerization. The linker
proteins seem to play a significant role in modulation of the
cell mechanics that is a critical factor in the regulation and
even manipulation of stem cells.

It is interesting to know that an electrical stimulation
alone fails to initiate MSC osteodifferentiation but, when
combined with the soluble factors, causes a synergistic stem
cell differentiation [24]. In the context of the proposed
model, an explanation can be provided that, as thick stress
fibers appear less stable than thin microfilaments, the stress
fibers are disassembled initially under an electrical exposure.
This brings the cell elastic and structural properties closer
to those of fully differentiated osteoblasts, and induces
the cell membrane dissociation from cytoskeleton, and
consequently decreases the membrane tension to enhance
endocytosis and transmembrane trafficking of the soluble
factors. When cells are allowed to recover following the
electrical exposure in presence of soluble factors, a further
rearrangement of actin and ERM proteins will proceed along
with expression of osteogenic markers. In contrast, neuronal
cells exhibit a very weak actin cytoskeleton and a relatively
loose plasma membrane as indicated by the tether extraction
experiments [149]. Therefore, a higher physical stimulation
might be required to facilitate neurogenic differentiation,
which will maximally disrupt the actin cytoskeleton and
inhibit ERM linkers, suggesting a plausible approach for
precisely controlling the physical parameters for selective
manipulation of mechanical properties of a particular and
pre-selected cell phenotype. Taken together, optimal use
of the physicochemical cues may lead the researcher to
develop strategies for tissue engineering by manipulating
cell differentiation, mobility, and cell incorporation into
engineered scaffolds, and eventual maturation of tissue
substitutes. An in depth understanding of mechanisms that

allow regulation of the cell biomechanical and biochemical
properties will undoubtedly lead to a more effective develop-
ment of therapeutics for regenerative medicine.

4. Conclusions

It is clear that stem cells respond to various physicochem-
ical factors. While biologists have long appreciated the
important role for soluble factors in the regulation of stem
cell differentiation, the mechanical and electrical stimuli
are now firmly established to significantly influence the
stem cell fate. Therefore, the idea of combining multiple
differentiation cues is gaining traction and could lead to
an active research area of stem cells and perhaps unravel
their intricate biological and physical properties. Future work
should include execution and full analysis of multifactorial
design experiments in which the presumed orthogonal
cues (e.g., soluble biochemical and physical force are non-
interactive) might interact to produce higher order effects
[150]. One example might be to vary the concentration
of soluble factors that many laboratories currently use.
Induction protocols using a lesser amount of soluble factors
could be just as potent when combined with suitable physical
cues. However, completion of the all possible combinatory
experiments may be laborious, and it is unlikely that we
can determine a set of combinational cues that is widely
applicable irrespective of tissue phenotypes. Rather, for an
intended tissue phenotype, the physicochemical cues would
have to be optimized for this particular phenotype that
is distinctively different from others morphologically and
functionally (e.g., excitable versus non-excitable tissues).
In spite of such difficulties, advances in the molecular,
biophysical, and imaging tools should allow a more detailed
understanding of the coupling mechanisms that regulate
stem cell differentiation in the near future. Establishment
of new paradigms in which stem cells can be manipulated
physicochemically will undoubtedly expedite the current
effort for stem cell-based regenerative medicine by targeting
specific combinations of physicochemical cues that optimally
exploit the unique biological and biophysical properties of
stem cells for the intended differentiation.
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